Answer:
(1)155 degrees
(2)135 degrees
(3)105 degrees
Step-by-step explanation:
Let the original angle [tex]= \theta[/tex]
Angle Bisector of the original angle = [tex]\dfrac{ \theta}{2}[/tex]
If the other angle forms a linear pair, then:
The other angle, [tex]\beta=180^\circ-\theta[/tex]
Therefore, the measure of the angle formed by the angle bisector of the original angle and the opposite ray is:
[tex]\dfrac{ \theta}{2}+180^\circ-\theta\\=180^\circ-\dfrac{ \theta}{2}[/tex]
(1)If the angle equals 50°
Then the measurement of the required angle
[tex]=180^\circ-\dfrac{ 50}{2}\\=180^\circ-25^\circ\\=155^\circ[/tex]
(2)If the angle equals 90°
Then the measurement of the required angle
[tex]=180^\circ-\dfrac{ 90}{2}\\=180^\circ-45^\circ\\=135^\circ[/tex]
{3)If the angle equals 150°
Then the measurement of the required angle
[tex]=180^\circ-\dfrac{ 150}{2}\\=180^\circ-75^\circ\\=105^\circ[/tex]
See attachment for an example of the graphical solution.