Answer:
[tex]\large \boxed{\text{30 rev/s}}[/tex]
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:
[tex]\begin{array}{rcl}I_{1}\omega_{1} &= &I_{2}\omega_{2}\\\text{3.5 kg$\cdot$m$^{2}$}\times \text{6.0 rev/s} &= &\text{0.70 kg$\cdot$m$^{2}$}\times\omega_{2}\\\text{21 rev/s} &= &0.70\omega_{2}\\\omega_{2} & = & \dfrac{\text{21 rev/s}}{0.70}\\\\&=&\textbf{30 rev/s}\\\end{array}\\\text{The skater's final rotational speed is $\large \boxed{\textbf{30 rev/s}}$}[/tex]