Answer:
b) 0.0608
Step-by-step explanation:
As it is mentioned that the next two days i.e 24 hours, the probability of the rain is uniformly distributed
Therefore the rain probability is
[tex]= \frac{T}{24}[/tex]
where,
T = Length of the time interval
Plus, as we know that rain is independent
So let us assume the rain between the 8: 40 AM and 2: 35 PM on single day is P1 and the time interval is 5 hours 55 minutes
i.e
= 5.91666 hours long.
So, P1 should be
[tex]= \frac{5.91666}{24}[/tex]
= 0.2465
Now we assume the probability of rain on day 2 is P2
So it would be same i.e 0.2465
Since these events are independent
So, the total probability is
[tex]= 0.2465 \times 0.2465[/tex]
= 0.0608
Hence, the b option is correct