Respuesta :
Answer:
Length of arc QR is [tex]\approx[/tex] 9.9 cm
Step-by-step explanation:
Given that circle P, i.e. center is point P.
QS is diameter with length 20 cm.
Given that RP is the radius with
[tex]\angle RPS = 123^\circ[/tex]
To find length of arc QR = ?
Solution:
Arc QR subtends the [tex]\angle QPR[/tex] on center P.
So, we need to find the angle [tex]\angle QPR[/tex] to find the length of arc QR.
QS is the diameter so [tex]\angle QPS = 180^\circ[/tex]
[tex]\angle QPS = 180^\circ = \angle QPR +\angle RPS\\\Rightarrow 180^\circ = \angle QPR +123^\circ\\\Rightarrow \angle QPR = 57^\circ[/tex]
Converting in radians,
[tex]\angle QPR = 57^\circ \times \dfrac{\pi}{180} = 0.99\ radians[/tex]
Using the formula for length of arc:
[tex]l = \theta \times R[/tex]
Where [tex]\theta[/tex] is the angle subtended by the arc on center.
R is the radius of circle.
Here,
[tex]\theta = 0.99\ radians\\R = 10\ cm[/tex]
[tex]l = 0.99 \times 10\\l = 9.9\ cm[/tex]
Length of arc QR is [tex]\approx[/tex] 9.9 cm