Answer:
The variance of the given data is 106.9667
Step-by-step explanation:
The variance, S² of a sample is given by the expression;
[tex]S^2 = \dfrac{\sum \left (x_{i}-\bar{x} \right )^{2}}{n-1}[/tex]
Where:
[tex]x_{i}[/tex] = One of the observations
[tex]\bar{x}[/tex] = The mean of the observations
n = Number in the sample = 6
The mean = Σ[tex]x_{i}[/tex]/n = (26 + 32 + 29 + 16 + 45 + 19 )/6 = 167/6 = 27.833
Therefore, we have;
S² = ((26 - 27.833)²+(32 - 27.833)²+(29 - 27.833)²+(16 - 27.833)²+(45 - 27.833)²+(19 - 27.833)²)/(6 - 1) = 106.9667.