Respuesta :
Answer:
Apparently [tex]\mathbf{p}_1(t) + \mathbf{p}_2(t) - \mathbf{p}_3(t) = 0[/tex].
One possible basis for this span is [tex]\left\{3 + 8\, t,\, 3 - 8\, t\right\}[/tex].
Step-by-step explanation:
Linear Dependence
A set of vectors is linearly-dependent if one of the vectors is a linear combination of the others.
Alternatively, to show linear dependence, show that the equation [tex]a\, \mathbf{p}_1 + b\, \mathbf{p}_2 + c\, \mathbf{p}_3 = 0[/tex] has a non-trivial solution (where at least one of the three scalars [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] is non-zero.)
For this set of polynomials, it can be shown that:
[tex]\mathbf{p}_3(t) = \mathbf{p}_1(t) + \mathbf{p}_2(t)[/tex], or equivalently,
[tex]\mathbf{p}_1(t) + \mathbf{p}_2(t) - \mathbf{p}_3(t) = 0[/tex].
Either way, the set [tex]\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\}[/tex] would be linearly-dependent.
Basis of the Span
[tex]\mathbf{p}_3(t) = \mathbf{p}_1(t) + \mathbf{p}_2(t)[/tex] implies that [tex]\mathbf{p}_3[/tex] is a linear combination of [tex]\mathbf{p}_1[/tex] and [tex]\mathbf{p}_2[/tex]. Therefore, [tex]\mathbf{p}_3[/tex] is in the span of [tex]\mathbf{p}_1[/tex] and [tex]\mathbf{p}_2[/tex] (in other words, [tex]\mathbf{p}_3 \in \mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex].) Hence:
[tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\} = \mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex].
Therefore, any basis of the set [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex] would also be a basis of the set [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\}[/tex].
On the other hand, it can be shown that [tex]\mathbf{p}_1[/tex] and [tex]\mathbf{p}_2[/tex] are linearly-independent. Therefore, [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex] should have a dimension of [tex]2[/tex]. As a result, there should be exactly [tex]2[/tex] linearly-independent vectors in a basis of [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex].
There are many different choices for the basis of [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex]. One possible choice is the set [tex]\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex], which is equal to [tex]\left\{3 + 8\, t,\, 3 - 8\, t\right\}[/tex]. Make sure that this set is indeed linearly-independent and contains two vectors.
Because it has already been shown that [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\} = \mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex], [tex]\left\{3 + 8\, t,\, 3 - 8\, t\right\}[/tex] should be a basis of the set [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\}[/tex], as well.