Consider the polynomials Bold p 1 (t )p1(t) equals = 3 3 plus + 8 8​t, Bold p 2 (t )p2(t) equals = 3 3 minus − 8 8​t, and Bold p 3 (t )p3(t) equals = 6 6 ​(for all​ t). By​ inspection, write a linear dependence relation among Bold p 1 p1​, Bold p 2 p2​, and Bold p 3 p3. Then find a basis for Span StartSet Bold p 1 comma Bold p 2 comma Bold p 3 EndSet Spanp1, p2, p3.

Respuesta :

Answer:

Apparently [tex]\mathbf{p}_1(t) + \mathbf{p}_2(t) - \mathbf{p}_3(t) = 0[/tex].

One possible basis for this span is [tex]\left\{3 + 8\, t,\, 3 - 8\, t\right\}[/tex].

Step-by-step explanation:

Linear Dependence

A set of vectors is linearly-dependent if one of the vectors is a linear combination of the others.

Alternatively, to show linear dependence, show that the equation [tex]a\, \mathbf{p}_1 + b\, \mathbf{p}_2 + c\, \mathbf{p}_3 = 0[/tex] has a non-trivial solution (where at least one of the three scalars [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] is non-zero.)

For this set of polynomials, it can be shown that:

[tex]\mathbf{p}_3(t) = \mathbf{p}_1(t) + \mathbf{p}_2(t)[/tex], or equivalently,

[tex]\mathbf{p}_1(t) + \mathbf{p}_2(t) - \mathbf{p}_3(t) = 0[/tex].

Either way, the set [tex]\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\}[/tex] would be linearly-dependent.

Basis of the Span

[tex]\mathbf{p}_3(t) = \mathbf{p}_1(t) + \mathbf{p}_2(t)[/tex] implies that [tex]\mathbf{p}_3[/tex] is a linear combination of [tex]\mathbf{p}_1[/tex] and [tex]\mathbf{p}_2[/tex]. Therefore, [tex]\mathbf{p}_3[/tex] is in the span of [tex]\mathbf{p}_1[/tex] and [tex]\mathbf{p}_2[/tex] (in other words, [tex]\mathbf{p}_3 \in \mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex].) Hence:

[tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\} = \mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex].

Therefore, any basis of the set [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex] would also be a basis of the set [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\}[/tex].

On the other hand, it can be shown that [tex]\mathbf{p}_1[/tex] and [tex]\mathbf{p}_2[/tex] are linearly-independent. Therefore, [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex] should have a dimension of [tex]2[/tex]. As a result, there should be exactly [tex]2[/tex] linearly-independent vectors in a basis of [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex].

There are many different choices for the basis of [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex]. One possible choice is the set [tex]\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex], which is equal to [tex]\left\{3 + 8\, t,\, 3 - 8\, t\right\}[/tex]. Make sure that this set is indeed linearly-independent and contains two vectors.

Because it has already been shown that [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\} = \mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2\right\}[/tex], [tex]\left\{3 + 8\, t,\, 3 - 8\, t\right\}[/tex] should be a basis of the set [tex]\mathrm{Span}\left\{\mathbf{p}_1,\, \mathbf{p}_2,\, \mathbf{p}_3\right\}[/tex], as well.