Respuesta :
Answer:
(a) The value of f (x) + g (x) is [tex]x^{2}+4x+48[/tex].
(b) The value of f (x) - g (x) is [tex]x^{2} +12x+36[/tex].
(c) The value of f (x) · g (x) is [tex]x^{3}+19x^{2}+120x+252[/tex].
(d) The value of f (x)/g (x) is[tex](x+6)[/tex].
Step-by-step explanation:
The two polynomials provided are:
[tex]f(x)=x^{2} + 13x + 42\\\\g(x)=x+6[/tex]
(a)
Compute the value of f (x) + g (x) as follows:
[tex]f(x)+g(x)=(x^{2} + 13x + 42)+(x+6)[/tex]
[tex]=x^{2} + 13x + 42+x+6\\\\=x^{2} + (13x+x)+(42+6)\\\\=x^{2} +14x+48[/tex]
Thus, the value of f (x) + g (x) is [tex]x^{2}+4x+48[/tex].
(b)
Compute the value of f (x) - g (x) as follows:
[tex]f(x)-g(x)=(x^{2} + 13x + 42)-(x+6)[/tex]
[tex]=x^{2} + 13x + 42-x-6\\\\=x^{2} + (13x-x)+(42-6)\\\\=x^{2} +12x+36[/tex]
Thus, the value of f (x) - g (x) is [tex]x^{2} +12x+36[/tex].
(c)
Compute the value of f (x) · g (x) as follows:
[tex]f(x)\cdot\ g(x)=(x^{2} + 13x + 42)\cdot(x+6)[/tex]
[tex]=x^{2}\cdot(x+6)+13x\cdot(x+6)+42\cdot(x+6)\\\\=x^{3}+6x^{2}+13x^{2}+78x+42x+252\\\\=x^{3}+(6x^{2}+13x^{2})+(78x+42x)+252\\\\=x^{3}+19x^{2}+120x+252[/tex]
Thus, the value of f (x) · g (x) is [tex]x^{3}+19x^{2}+120x+252[/tex].
(d)
Compute the value of f (x)/g (x) as follows:
[tex]f(x)/ g(x)=\frac{(x^{2} + 13x + 42)}{(x+6)}[/tex]
[tex]=\frac{(x^{2} + 7x + 6x + 42)}{(x+6)}\\\\=\frac{x(x+7)+6(x+7)}{(x+6)}\\\\=\frac{(x+6)(x+7)}{(x+6)}\\\\=(x+6)[/tex]
Thus, the value of f (x)/g (x) is[tex](x+6)[/tex].