Answer:
The expression of [tex]\vec v[/tex] in terms of i and j is:
[tex]\vec v = 74\cdot i + 0\cdot j[/tex]
Step-by-step explanation:
Let [tex]\vec P_{1}[/tex] and [tex]\vec P_{2}[/tex] vectors with respect to origin, so that [tex]\vec P_{1} = (-8,44)[/tex] and [tex]\vec P_{2} = (66,44)[/tex]. [tex]\vec v[/tex] is a vector of the form:
[tex]\vec v = \vec P_{2} - \vec P_{1}[/tex]
Then,
[tex]\vec v = (66,44)-(-8,44)[/tex]
[tex]\vec v = (66 + 8, 44 - 44)[/tex]
[tex]\vec v = (74, 0)[/tex]
The expression of [tex]\vec v[/tex] in terms of i and j is:
[tex]\vec v = 74\cdot i + 0\cdot j[/tex]