Respuesta :
The diagram that describes the question is attached as a file below
Answer:
[tex]d = 62.9 s[/tex]
Explanation:
[tex]v_0 = 45 ft/s\\e = 0.9[/tex]
Tangent velocity, [tex](v_A)_t = v_0 sin (90 - 60)[/tex]
[tex](v_A)_t = 45 sin(30) = 22.5 ft/s\\[/tex]
[tex]v_0 sin(30 - \alpha) = 22.5[/tex]....................(1)
Along the normal:
[tex]e = \frac{0 - (v_a)_n}{(v_a)_n - 0} \\0.9 = \frac{0 - v_0 cos(30 - \alpha)}{-45 cos 30} \\[/tex]
[tex]v_0 cos(30 - \alpha) = 35.07[/tex].................(2)
Dividing equation (1) by equation (2)
[tex]tan(30 - \alpha) = 22.5/35.07\\30 - \alpha = tan^{-1}(22.5/35.07)\\30 - \alpha = 32.68\\\alpha = - 2.68^0\\tan(\alpha - 30) = 22.5/35.07\\\alpha = 62.68^0[/tex]
[tex]v_0 = \frac{35.07}{ cos32.69} \\v_0 = 41.67 ft/s\\h = \frac{(v_0)_y^2}{2g} \\h = \frac{(41.67sin62.68)^2}{2*32.2}\\h = 21.28 ft\\[/tex]
Time taken from A to E, t₁
[tex]t_1 = \frac{(v_0)_y}{g} \\t_1 = \frac{41.67sin62.68}{32.2}\\t_1 = 1.15 s[/tex]
Time taken from E to B, t₂
[tex]t_2 = \sqrt{\frac{2(21.28+3)}{9.8}} \\t_2 = 2.23 s[/tex]
Total time, t = 1.15 + 2.23
t = 3.38 s
[tex]d = (v_0)_x t - CD\\d = [(41.67 cos 62.68)*3.38] - \frac{3}{tan 60} \\d = 62.9 s[/tex]
The distance ( d ) from the foot of the wall to the Point B where the ball hits the ground after bouncing off the wall : 62.9
Given data :
Height = 3 ft
Horizontal velocity ( V₀ ) = 45 ft/s
Coefficient of restitution = 0.9
Determine the distance from foot of wall
Tangent velocity ( Vₐ ) t = 45 sin(30) = 22.5 ft/s
∴ V₀sin ( 30 - ∝ ) = 22.5 ------ ( 1 )
along the normal plane
V₀cos ( 30 - ∝ ) = 35.07 ------ ( 2 )
- step 1 : Divide equation ( 1 ) by ( 2 )
Tan ( 30 - ∝ ) = ( 22.5 / 35.07 )
∴ ∝ = 30 - 32.68
= -2.68° ≈ 62.68°
V₀ is also expressed as : ( 35.07 ) / ( cos 32.69 )
∴ V₀ = 41.67 ft/s
- step 2 : Determine the value of h
h = [tex]\frac{(Vo)^{2}y }{2*g}[/tex] = ( 41.67 * sin62.68 )² / ( 2 * 32.2 )
= 21.28 ft
- step 3 : Determine time taken from one point to another
Time taken from point A to E
T₁ = ( 41.67 * sin62.68 ) / 32.2
= 1.15 secs
Time from point E to B
T₂ = [tex]\sqrt{\frac{2(21.28+3)}{9.8} }[/tex] = 2.23 secs
Therefore the Total time taken = 2.23 + 1.15 = 3.38 secs
Final step : Determine the distance d
d = ( V₀ )x t - CD
= [ ( 41.67*cos62.68 ) * 3.38 ] - [tex]\frac{3}{tan 60}[/tex]
= 62.9
Hence we can conclude that The distance ( d ) from the foot of the wall to the Point B where the ball hits the ground after bouncing off the wall is 62.9
Learn more about ball bouncing off the wall : https://brainly.com/question/21293362
Attached below is the missing data related to your question