Calculate the energy (in J/atom) for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C is 3.6 x 1017/cm3. The atomic weight and density for silver are 107.9 g/mol and 9.5 g/cm3, respectively

Respuesta :

Answer:

the energy vacancies for formation in silver is [tex]\mathbf{Q_v = 3.069*10^{-4} \ J/atom}[/tex]

Explanation:

Given that:

the equilibrium  number of vacancies at 800 °C

i.e T = 800°C     is  3.6 x 10¹⁷ cm3

Atomic weight of sliver = 107.9 g/mol

Density of silver = 9.5 g/cm³

Let's first determine the number of atoms in silver

Let silver be represented by N

SO;

[tex]N = \dfrac{N_A* \rho _{Ag}}{A_{Ag}}[/tex]

where ;

[tex]N_A =[/tex] avogadro's number = [tex]6.023*10^{23} \ atoms/mol[/tex]

[tex]\rho _{Ag}[/tex] = Density of silver = 9.5 g/cm³

[tex]A_{Ag}[/tex] = Atomic weight of sliver = 107.9 g/mol

[tex]N = \dfrac{(6.023*10^{23} \ atoms/mol)*( 9.5 \ g/cm^3)}{(107.9 \ g/mol)}[/tex]

N = 5.30 × 10²⁸ atoms/m³

However;

The equation for equilibrium number of vacancies can be represented by the equation:

[tex]N_v = N \ e^{^{-\dfrac{Q_v}{KT}}[/tex]

From above; Considering the  natural logarithm on both sides; we have:

[tex]In \ N_v =In N - \dfrac{Q_v}{KT}[/tex]

Making [tex]Q_v[/tex] the subject of the formula; we have:

[tex]{Q_v = - {KT} In( \dfrac{ \ N_v }{ N})[/tex]

where;

K = Boltzmann constant = 8.62 × 10⁻⁵ eV/atom .K

Temperature T = 800 °C = (800+ 273) K = 1073 K

[tex]Q _v =-( 8.62*10^{-5} \ eV/atom.K * 1073 \ K) \ In( \dfrac{3.6*10^{17}}{5.3 0*10^{28}})[/tex]

[tex]\mathbf{Q_v = 2.38 \ eV/atom}[/tex]

Where;

1 eV = 1.602176565 × 10⁻¹⁹ J

Then

[tex]Q_v = (2.38 \ * 1.602176565 * 10^{-19} ) J/atom }[/tex]

[tex]\mathbf{Q_v = 3.069*10^{-4} \ J/atom}[/tex]

Thus, the energy vacancies for formation in silver is [tex]\mathbf{Q_v = 3.069*10^{-4} \ J/atom}[/tex]