At some instant and location, the electric field associated with an electromagnetic wave in vacuum has the strength 71.9 V/m. Find the magnetic field strength B, the total energy density u, and the power flow per unit area, all at the same instant and location.

Respuesta :

Answer:

a) Magnetic field strength, B = 2.397 * 10⁻⁷ T

b) Total energy density, U = 4.58 * 10⁻⁸ J/m³

c) Power flow per unit area, S = 13.71 W/m²

Explanation:

a) Electric field strength, E = 71.9 V/m

The relationship between the Electric field strength and the magnetic field strength in vacuum is:

E = Bc where c = 3.0 * 10⁸ m/s

71.9 = B * 3.0 * 10⁸

B = 71.9 / (3.0 * 10⁸)

B = 23.97 * 10⁻⁸

B = 2.397 * 10⁻⁷ T

b) Total Energy Density:

[tex]U = \frac{1}{2} \epsilon_0E^2 + \frac{1}{2} \frac{B^2}{\mu_0} \\U = \frac{1}{2}* 8.85 * 10^{-12}*71.9^2 + \frac{1}{2} \frac{(2.397*10^{-7})^2}{4\pi*10^{-7}}\\U = 2.29 * 10^{-8} + 2.29 * 10^{-8}\\U = 4.58 * 10^{-8} J/m^3[/tex]

c)Power flow per unit area

[tex]S = \frac{1}{\mu_0} EB\\S = \frac{1}{4\pi * 10^{-7} } * 71.9 * 2.397 * 10^{-7}\\S = 13.71 W/m^2[/tex]