Answer:
The correct answers are (1) Option d (2) option a (3) option a
Step-by-step explanation:
Solution
(1) Option (d) The statement is false. A diagonalizable matrix must have n linearly independent eigenvectors: what it implies is that a matrix is diagnostic if it has linearity independent vectors.
(2) Option (a) The statement is false. A diagonalizable matrix can have fewer than n eigenvalues and still have n linearly independent eigenvectors: what this implies is that a diagonalizable matrix can have repeated eigenvalues.
(3) option (a) The statement is true. AP = PD implies that the columns of the product PD are eigenvalues that correspond to the eigenvectors of A : this implies that P is an invertible matrix whose column vectors are the linearity independent vectors of A.