Answer:
The 99% confidence interval for the proportion of donors who donated is (0.0547, 0.0585).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 100000, \pi = \frac{5066}{100000} = 0.0566[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.0566 - 2.575\sqrt{\frac{0.0566*0.9434}{100000}} = 0.0547[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.0566 + 2.575\sqrt{\frac{0.0566*0.9434}{100000}} = 0.0585[/tex]
The 99% confidence interval for the proportion of donors who donated is (0.0547, 0.0585).