Answer:
ΔV = -1321.73V
Explanation:
The change in potential along the path from C to D is given by the following expression:
[tex]\Delta V=-\int_a^bE dr[/tex] (1)
E: electric field produced by a charge at a distance of r
a: distance to the sphere at position C = 0.021m
b: distance to the sphere at position D = 0.055m
The electric field is given by:
[tex]E=k\frac{Q}{r^2}[/tex] (2)
Q: charge of the sphere = 5nC = 5*10^-9C
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
You replace the expression (2) into the equation (1) and solve the integral:
[tex]\Delta V=-kQ\int_a^b \frac{dr}{r^2}=-kQ[-\frac{1}{r}]_a^b[/tex] (3)
You replace the values of a and b:
[tex]\Delta V=(8.98*10^9Nm^2/C^2)(5*10^{-9}C)[\frac{1}{0.055m}-\frac{1}{0.021m}]\\\\\Delta V=-1321.73V[/tex]
The change in the potential along the path C-D is -1321.73V