Answer:
[tex]A(t)=50e^{-\frac{t}{70}}[/tex]
Explanation:
The volume of fluid in the tank =350 liters
Initial Amount of Salt, A(0)=50 grams
Amount of Salt in the Tank
[tex]\dfrac{dA}{dt}=R_{in}-R_{out}[/tex]
Pure water is then pumped into the tank at a rate of 5 L/min. Therefore:
[tex]R_{in}[/tex]=(concentration of salt in inflow)(input rate of brine)
[tex]=(0\frac{g}{L})( 5\frac{L}{min})\\\\R_{in}=0\frac{g}{min}[/tex]
[tex]R_{out}[/tex]=(concentration of salt in outflow)(output rate of brine)
[tex]=(\frac{A(t)}{350})( 5\frac{L}{min})\\R_{out}=\frac{A(t)}{70}[/tex]
Therefore:
[tex]\dfrac{dA}{dt}=0-\dfrac{A}{70}[/tex]
We then solve the resulting differential equation by separation of variables.
[tex]\dfrac{dA}{dt}+\dfrac{A}{70}=0\\$The integrating factor: e^{\int \frac{1}{70}dt} =e^{\frac{t}{70}}\\$Multiplying by the integrating factor all through\\\dfrac{dA}{dt}e^{\frac{t}{70}}+\dfrac{A}{70}e^{\frac{t}{70}}=0\\(Ae^{\frac{t}{70}})'=0[/tex]
Taking the integral of both sides
[tex]\int(Ae^{\frac{t}{70}})'=\int 0 dt\\Ae^{\frac{t}{70}}=C\\$Divide both sides by e^{\frac{t}{70}}\\A(t)=Ce^{-\frac{t}{70}}[/tex]
Recall that when t=0, A(0)=50 grams (our initial condition)
[tex]A(t)=Ce^{-\frac{t}{70}}\\50=Ce^{-\frac{0}{70}}\\C=50[/tex]
Therefore, the number of grams of salt in the tank at time t is:
[tex]A(t)=50e^{-\frac{t}{70}}[/tex]