Answer:
A) 0 V
B) -117 kV
C) -0.468 J
Explanation:
q1=+2.00μC q2=−2.00μC q3 = -4.00 μC
A) The electric potential at point a due to q1 and q2 ([tex]V_a[/tex]) is given as:
[tex]V_a=k\Sigma \frac{q}{r_i} = k(\frac{q_1}{r_1}+\frac{q_2}{r_2} )\\ but\ r_2=r_1=d.\ Therefore\\V_a=k(\frac{q_1}{d}+\frac{q_2}{d} )=k(\frac{2}{d}-\frac{2}{d} )=0[/tex]
B) he electric potential at point b due to q1 and q2 ([tex]V_b[/tex]) is given as:
[tex]V_b=k\Sigma \frac{q}{r_i} = k(\frac{q_1}{r_1}+\frac{q_2}{r_2} )\\ but\ r_2=4.5 cm=0.045m,\ r_1=\sqrt{0.045^2+0.045^2}= 0.0636.\ Therefore\\V_b= k(\frac{q_1}{r_1}+\frac{q_2}{r_2} )= 9*10^{9}(\frac{2*10^{-6}}{0.0636}-\frac{2*10^{-6}}{0.045} )=-117\ kV[/tex]
C) The work done on q3 by the electric forces exerted by q1 and q2 (W) is given by:
[tex]W=q_3(V_a - V_b)=-4*10^{-6}(0-(-117*10^3))=-0.468\ J[/tex]