Respuesta :
Answer:
2731
Step-by-step explanation:
3 - 1 = 2 = 2^1
11 - 3 = 8 = 2^3
43 - 11 = 32 = 2^5
171 - 43 = 128 = 2^7
683 - 171 = 512 = 2^9
Following the pattern, add 2^11 to 683.
683 + 2^11 = 683 + 2048 = 2731
Hi,
We have the sequence 1 , 3 , 11 , 43 , __.
Let us say [tex]a_{1}=1 , a_{2}=3 , a_{3}=11 , a_{4}=43[/tex] and it is required to find out [tex]a_{5}[/tex] .
As, we can see the pattern from the given four terms that,
[tex]a_{2}=a_{1}+2[/tex] i.e. [tex]a_{2}=a_{1}+2^{1}[/tex]
[tex]a_{3}=a_{2}+8[/tex] i.e. [tex]a_{3}=a_{1}+2^{3}[/tex]
[tex]a_{4}=a_{3}+32[/tex] i.e. [tex]a_{4}=a_{1}+2^{5}[/tex]
Since, the next term is obtained by adding the previous terms by odd powers of two.
Therefore, [tex]a_{5}=a_{4}+2^{7}[/tex] i.e. [tex]a_{5}=a_{4}+128[/tex] i.e [tex]a_{5}=43+128[/tex] i.e. [tex]a_{5}=171[/tex]
So, [tex]a_{5}=171.[/tex]
Hence, the next term of the sequence is 171.
Let us say [tex]a_{1}=1 , a_{2}=3 , a_{3}=11 , a_{4}=43[/tex], [tex]a_{5}[/tex] [tex]= 683[/tex] and it is required to find out [tex]a_{6}[/tex].
Therefore, [tex]a_{6}=a_{5}+2^{9}[/tex] i.e. [tex]a_{6}=a_{5}+512[/tex] i.e [tex]a_{6}=683+512[/tex] i.e. [tex]a_{6}=1195[/tex]
So, [tex]a_{6}=1195.[/tex]
Hence, the next term of the sequence is 1195.