A drainage canal has a cross section in the shape of a parabola. Suppose that the canal is 10 feet deep and 20 feet wide at the top. If the water depth in the ditch is 5 feet, how wide is the surface of the water in the ditch?

A drainage canal has a cross section in the shape of a parabola Suppose that the canal is 10 feet deep and 20 feet wide at the top If the water depth in the dit class=

Respuesta :

Answer:

The answer is "[tex]\bold{10\sqrt{2}}[/tex]".

Step-by-step explanation:

Equation of the parabola:

[tex]\to y=ax^2 \ \ \ \ \ \ \ \ \ _{where}, (x,y) _{are} (10,10) \\\\\[/tex]

[tex]\to 10=a(10)^2\\\\\to 10=100a\\\\\to a=\frac{10}{100}\\\\\to a= \frac{1}{10}\\[/tex]

if the value of a= [tex]\frac{1}{10}[/tex] then put the value into the equation:

[tex]\to y=\frac{x^2}{10}\\\\[/tex]

when depth of water y=5

[tex]\to 5=\frac{x^2}{10}\\\\\to x^2=50\\\\\to x=\pm\sqrt{50}\\\\[/tex]

So, width:

[tex]\to 2\sqrt{50}=2\sqrt{25 \times 2}\\[/tex]

             [tex]=2 \sqrt{5^2\times 2}\\\\=2\times 5 \sqrt{2}\\\\=10\sqrt{2}[/tex]