Answer:
The answer is "[tex]\bold{10\sqrt{2}}[/tex]".
Step-by-step explanation:
Equation of the parabola:
[tex]\to y=ax^2 \ \ \ \ \ \ \ \ \ _{where}, (x,y) _{are} (10,10) \\\\\[/tex]
[tex]\to 10=a(10)^2\\\\\to 10=100a\\\\\to a=\frac{10}{100}\\\\\to a= \frac{1}{10}\\[/tex]
if the value of a= [tex]\frac{1}{10}[/tex] then put the value into the equation:
[tex]\to y=\frac{x^2}{10}\\\\[/tex]
when depth of water y=5
[tex]\to 5=\frac{x^2}{10}\\\\\to x^2=50\\\\\to x=\pm\sqrt{50}\\\\[/tex]
So, width:
[tex]\to 2\sqrt{50}=2\sqrt{25 \times 2}\\[/tex]
[tex]=2 \sqrt{5^2\times 2}\\\\=2\times 5 \sqrt{2}\\\\=10\sqrt{2}[/tex]