Answer:
(a)[tex]g(n)=0.05\cdot 2^n[/tex]
(b)[tex]g^{-1}(n)=\log_{2}20g(n)[/tex]
(c)43 times
Step-by-step explanation:
Part A
The paper's thickness = 0.05mm
When the paper is folded, its width doubles (increases by 100%).
The thickness of the paper grows exponentially and can be modeled by the function:
[tex]g(n)=0.05(1+100\%)^n\\\\g(n)=0.05\cdot 2^n[/tex]
Part B
[tex]g(n)=0.05\cdot 2^n\\2^n=\dfrac{g(n)}{0.05}\\ 2^n=20g(n)\\$Changing to logarithm form, we have:\\\log_{2}20g(n)=n\\$Therefore:\\g^{-1}(n)=\log_{2}20g(n)[/tex]
Part C
If the thickness of the paper, g(n)=384,472,300,000 mm
Then:
[tex]g^{-1}(n)=\log_{2}20g(n)\\g^{-1}(n)=\log_{2}20\times 384,472,300,000\\=\dfrac{\log 20\times 384,472,300,000}{\log 2} \\g^{-1}(n)=42.8 \approx 43\\n=43[/tex]
You must fold the paper 43 times to make the folded paper have a thickness that is the same as the distance from the earth to the moon.