Answer:
[tex] Range = Max -Min[/tex]
[tex]Range= 42-10.5= 31.5[/tex]
The sample variance would be given by;
[tex] s^2=\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}[/tex]
And replacing we got:
[tex] s^2 = 161.377[/tex]
The standard deviation would be:
[tex]s=\sqrt{161.367}=12.703[/tex]
Step-by-step explanation:
For this case we have the following data:
42 40 39 31 22 18 15 12 11.7 10.5
If we sort the values on increasing order we got:
10.5 11.7 12.0 15.0 18.0 22.0 31.0 39.0 40.0 42.0
The range is defined as:
[tex] Range = Max -Min[/tex]
[tex]Range= 42-10.5= 31.5[/tex]
The sample variance would be given by;
[tex] s^2=\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}[/tex]
And replacing we got:
[tex] s^2 = 161.377[/tex]
The standard deviation would be:
[tex]s=\sqrt{161.367}=12.703[/tex]