Answer:
[tex]x^2 + (y - 4)^2 = \dfrac{25}{9}[/tex]
Step-by-step explanation:
The equation of a circle with center at (h, k) and radius r is
[tex] (x - h)^2 + (y - k)^2 = r^2 [/tex]
You have center (0, 4).
We get:
[tex] (x - 0)^2 + (y - 4)^2 = r^2 [/tex]
[tex] x^2 + (y - 4)^2 = r^2 [/tex]
To find the radius, we use the distance formula to find the distance from the center of the circle to the given point on the circle.
[tex] r = d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
[tex] r = \sqrt{(\dfrac{4}{3} - 0)^2 + (5 - 4)^2} [/tex]
[tex] r = \sqrt{(\dfrac{4}{3})^2 + 1^2} [/tex]
[tex] r = \sqrt{\dfrac{16}{9} + \dfrac{9}{9}} [/tex]
[tex] r = \sqrt{\dfrac{25}{9}} [/tex]
We need r^2 in the equation of the circle, so
[tex] r^2 = \dfrac{25}{9} [/tex]
The equation of the circle is
[tex]x^2 + (y - 4)^2 = \dfrac{25}{9}[/tex]