Respuesta :

Answer:

[tex]x^2 + (y - 4)^2 = \dfrac{25}{9}[/tex]

Step-by-step explanation:

The equation of a circle with center at (h, k) and radius r is

[tex] (x - h)^2 + (y - k)^2 = r^2 [/tex]

You have center (0, 4).

We get:

[tex] (x - 0)^2 + (y - 4)^2 = r^2 [/tex]

[tex] x^2 + (y - 4)^2 = r^2 [/tex]

To find the radius, we use the distance formula to find the distance from the center of the circle to the given point on the circle.

[tex] r = d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

[tex] r = \sqrt{(\dfrac{4}{3} - 0)^2 + (5 - 4)^2} [/tex]

[tex] r = \sqrt{(\dfrac{4}{3})^2 + 1^2} [/tex]

[tex] r = \sqrt{\dfrac{16}{9} + \dfrac{9}{9}} [/tex]

[tex] r = \sqrt{\dfrac{25}{9}} [/tex]

We need r^2 in the equation of the circle, so

[tex] r^2 = \dfrac{25}{9} [/tex]

The equation of the circle is

[tex]x^2 + (y - 4)^2 = \dfrac{25}{9}[/tex]