Evaluate the expression. [(3–5)(34)]3 1 Innermost group, apply the product of powers: [3–1]3 2 Apply the power of a power: 3–3 3 Apply the negative exponent: 1 33 4 Simplify: 1 x What is the value of x in the simplified expression?

Respuesta :

Answer:

x=27

Step-by-step explanation:

To evaluate the expression: [tex][(3^{-5})(3^4)]^3[/tex]

Step 1:  Innermost group, apply the product of powers ([tex]a^x \times a^y =a^{x+y}[/tex]

Therefore:

[tex](3^{-5})(3^4)=3^{-5+4}=3^{-1}[/tex]

We then have:

[tex]=[3^{-1}]^3[/tex]

Step 2: Apply the power of a power

[tex][3^{-1}]^3=3^{-1 \times 3} =3 ^{-3}[/tex]

Step 3: Apply the negative exponent

[tex]3 ^{-3} =\dfrac{1}{3^3}[/tex]

Step 4: Simplify

[tex]\dfrac{1}{3^3}=\dfrac{1}{27}[/tex]

Therefore, the value of x in the simplified expression is 27.

iphvne

Answer:

27

Step-by-step explanation:

:)