Respuesta :

Answer:

[tex]70^\circ, 250^\circ[/tex]

Step-by-step explanation:

Given that:

[tex]tan x= 2.7475[/tex]

and  [tex]0^\circ < x < 360^\circ[/tex] i.e. [tex]x[/tex] lies in the interval [tex]0^\circ[/tex] to [tex]360^\circ[/tex] or [tex]0\ to\ 2\pi[/tex].

To find: The possible values for x in the interval [tex]0^\circ[/tex] to [tex]360^\circ[/tex] = ?

First of all, let us learn something about [tex]tan\theta[/tex].

In a right angled triangle the value of [tex]tan\theta[/tex] can be calculated as follows:

[tex]tan\theta = \dfrac{Perpendicular}{Base}[/tex]

i.e. [tex]tan\theta[/tex]  is equal to the ratio of Perpendicular to Base in a right angled triangle.

We are given that:

[tex]tan x= 2.7475[/tex]

[tex]\Rightarrow x = tan^{-1}(2.7475)\\\Rightarrow x = 70^\circ[/tex]

So, the value of x in first quadrant is [tex]70^\circ[/tex].

It is also known that value of tangent is positive in the first and third quadrant.

We are given a positive value of tangent here,

So, another value of [tex]x = 180^\circ+70^\circ = 250^\circ[/tex]

Hence, the correct answers are:  [tex]x=70^\circ, 250^\circ[/tex]