Respuesta :
The value of cos([tex]60^{o}[/tex]) = [tex]\frac{1}{2}[/tex]
We have : sin [tex]30^{o}[/tex] = [tex]\frac{1}{2}[/tex]
We have to find the value cos [tex]60^{o}[/tex] using the value of sin ([tex]30^{o}[/tex]).
Express cos (2x) in terms of cos(x) and sin(x). How will you express cos(x) in terms of cos (2x)
We can express cos(2x) in terms of cos(x) and sin(x) as follows -
[tex]cos(2x)=cos^{2}x - sin^{2}x\\\\[/tex]. (Eqn. 1)
We know that -
[tex]1 = cos^{2}x +sin^{2}x[/tex] (Eqn. 2)
Add both equations 1 and 2, we get -
[tex]2\;cos^{2}x =1+cos 2(x)[/tex]
[tex]cos\; x = \sqrt{\frac{1+cos(2x) }{2} }[/tex]
We can write cos ([tex]60^{o}[/tex]) as cos (2 x [tex]30^{o}[/tex]). Hence , x = [tex]30^{o}[/tex]
cos (2 x [tex]30^{o}[/tex]) = [tex]cos^{2}\;30^{o} - sin^{2}\;30^{o}[/tex] = [tex](\frac{\sqrt{3} }{2}) ^{2} - (\frac{1}{2}) ^{2}[/tex] = [tex]\\\\\frac{3}{4} - \frac{1}{4}[/tex] = [tex]\frac{1}{2}[/tex]
Hence, the value of cos([tex]60^{o}[/tex]) = [tex]\frac{1}{2}[/tex]
To solve more questions on trigonometric identities, visit the link below -
https://brainly.com/question/14750627
#SPJ5