Answer:
Acceleration of the apple towards the earth is: 9.7705 m/s2.
Acceleration produced on earth towards the apple
[tex]0.325*10^{-24} \ \ m/s2.[/tex]
Explanation:
Given :
[tex]m = 200 g[/tex]
We have to convert into the kg ,
so
[tex]m=0.2 kg[/tex]
M=[tex]6*10^{24}[/tex] kg
[tex]R=6.4*10^{6} m[/tex]
[tex]G= 6.67*10^{-11} \ Nm^{2} kg-2[/tex]
As the gravitational force is existing among the earth and the apple
so
[tex]F=\frac{GMm}{R^{2} }[/tex]
Putting the value of G,M,m and [tex]R^{2}[/tex], we get
[tex]\frac{6.67*10^{-11} *6*10^{24} *0.2 }{(6.4*10^{6} )^{2} } \\\\F= 1.9541\ N[/tex]
Consider a1 and a2 be a acceleration due to the gravitational force of earth attraction created on the apples
F= a1 *m
[tex]a1\ =\ \frac{F}{m}[/tex]
a1=[tex]\frac{1.9541}{0.2}[/tex]
[tex]a1=9.7705 \ m/s2[/tex]
Acceleration of the apple towards the earth is: 9.7705 m/s2.
again
[tex]F= a2 *M[/tex]
a2=[tex]\frac{F}{M}[/tex]
[tex]a2=\frac{ 1.9541}{6**10^{24} } \\a2=0.325* 10^{-24}\ m/s2[/tex]
So, Acceleration produced on earth towards the apple
[tex]0.325*10^{-24} \ \ m/s2.[/tex]