Answer:
r₂ = 1,586 m
Explanation:
For this problem we are going to solve it by parts, let's start by finding the sound intensity when we are 25 m
β = 10 log (I / I₀)
where Io is the sensitivity threshold 10⁻¹² W / m²
I₁ / I₀ = [tex]e^{\beta/10}[/tex]
I₁ = I₀ e^{\beta/10}
let's calculate
I₁ = 10⁻¹² e^{25/10}
I₁ = 1.20 10⁻¹¹ W / m²
the other intensity in exercise is
I₂ = 10⁻¹² e^{80/10}
I₂ = 2.98 10⁻⁹ W / m²
now we use the definition of sound intensity
I = P / A
where P is the emitted power that is a constant and A the area of the sphere where the sound is distributed
P = I A
the area a sphere is
A = 4π r²
we can write this equation for two points of the found intensities
I₁ A₁ = I₂ A₂
where index 1 corresponds to 25m and index 2 to the other distance
I₁ 4π r₁² = I₂ 4π r₂²
I₁ r₁² = I₂ r₂²
r₂ = √ (I₁ / I₂) r₁
let's calculate
r₂ = √ (1.20 10⁻¹¹ / 2.98 10⁻⁹) 25
r₂ = √ (0.40268 10⁻²) 25
r₂ = 1,586 m