Respuesta :

Answer:

[tex]x \leqslant - 3[/tex]

option C is the right option.

Solution,

[tex] \frac{x}{3} - \frac{x - 1}{2} \geqslant 1 \\ = \frac{2x - 3( x - 1)}{6} \geqslant 1 \\ = \frac{2x - 3x + 3}{6} \times 6 \geqslant 6 \\ = 2x - 3x + 3 \geqslant 6 \\ = - x + 3 \geqslant 6 \\ = - x + 3 - 3 \geqslant 6 - 3 \\ = - x \geqslant 3 \\ = - ( - x) \leqslant - 3 \\ = x \leqslant - 3[/tex]

hope this helps...

Good luck on your assignment

Answer:

Let's solve your inequality step-by-step.

[tex]\frac{x}{3}-(\frac{x-1}{2})\geq1[/tex]

Step 1: Simplify both sides of the inequality.

[tex]\frac{-1}{6}x+\frac{1}{2}\geq1[/tex]

Step 2: Subtract 1/2 from both sides.

[tex]\frac{-1}{6}x+\frac{1}{2}-\frac{1}{2}\geq1-\frac{1}{2}[/tex]

[tex]\frac{-1}{6}x\geq\frac{1}{2}[/tex]

Step 3: Multiply both sides by 6/(-1).

[tex](\frac{6}{-1})*(\frac{-1}{6}x)\geq(\frac{6}{-1})*(\frac{1}{2})[/tex]

[tex]x\leq-3[/tex]

Answer:

[tex]x\leq-3[/tex] This is the answer

I hope this help you :)