Answer:
[tex]Orange\ area = A^2(\sqrt{3}/4 - \pi/8) = 0.0403A^2[/tex]
Step-by-step explanation:
First let's find the area of the triangle, using the formula:
[tex]Area\_triangle = side^2\sqrt{3}/4[/tex]
[tex]Area\_triangle = A^2\sqrt{3}/4[/tex]
Now, let's find the area of each circular sector of 60° (internal angle of a equilateral triangle):
[tex]Area\_sector = \pi*radius^2*60/360[/tex]
[tex]Area\_sector = \pi*(A/2)^2/6[/tex]
[tex]Area\_sector = \pi*A^2/24[/tex]
Now, To calculate the orange area in the center, we have:
[tex]Orange\ area = Area\_triangle - 3*Area\_sector[/tex]
[tex]Orange\ area = A^2\sqrt{3}/4 - \pi*A^2/8[/tex]
[tex]Orange\ area = A^2(\sqrt{3}/4 - \pi/8)[/tex]
[tex]Orange\ area = 0.0403A^2[/tex]