Respuesta :

Answer:

[tex]Orange\ area = A^2(\sqrt{3}/4 - \pi/8) = 0.0403A^2[/tex]

Step-by-step explanation:

First let's find the area of the triangle, using the formula:

[tex]Area\_triangle = side^2\sqrt{3}/4[/tex]

[tex]Area\_triangle = A^2\sqrt{3}/4[/tex]

Now, let's find the area of each circular sector of 60° (internal angle of a equilateral triangle):

[tex]Area\_sector = \pi*radius^2*60/360[/tex]

[tex]Area\_sector = \pi*(A/2)^2/6[/tex]

[tex]Area\_sector = \pi*A^2/24[/tex]

Now, To calculate the orange area in the center, we have:

[tex]Orange\ area = Area\_triangle - 3*Area\_sector[/tex]

[tex]Orange\ area = A^2\sqrt{3}/4 - \pi*A^2/8[/tex]

[tex]Orange\ area = A^2(\sqrt{3}/4 - \pi/8)[/tex]

[tex]Orange\ area = 0.0403A^2[/tex]