Corrected Question
Which equation can be solved by using this system of equations?
[tex]y= 3x^5 - 5x^3 + 2x^2 - 10x+4$ and y= 4x^4 + 6x^3 - 11[/tex]
Options
[tex](A)3x^5 -5x^3 + 2x^2 - 10x +4=0\\(B)3x^5 - 5x^3 + 2x^2 - 10x+4-4x^4 + 6x^3 - 11=0\\(C)3x^5 +4x^4 + x + 2x^2 - 10x-7=0\\(D)3x^5 - 5x^3 + 2x^2 - 10x+4-4x^4 - 6x^3 + 11=0[/tex]
Answer:
(D) [tex]3x^5 - 5x^3 + 2x^2 - 10x+4-4x^4 - 6x^3 + 11=0[/tex]
Step-by-step explanation:
[tex]y= 3x^5 - 5x^3 + 2x^2 - 10x+4\\y= 4x^4 + 6x^3 - 11\\$Therefore:\\3x^5 - 5x^3 + 2x^2 - 10x+4=4x^4 + 6x^3 - 11\\$Bring the terms on the right to the left\\3x^5 - 5x^3 + 2x^2 - 10x+4-4x^4 - 6x^3 + 11=0[/tex]