A publisher reports that 65% of their readers own a laptop. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 340 found that 60% of the readers owned a laptop. State the null and alternative hypotheses. Answer

Respuesta :

Answer:

[tex]z=\frac{0.60 -0.65}{\sqrt{\frac{0.65(1-0.65)}{340}}}=-1.933[/tex]  

The p value for this case can be calculated with this probability:

[tex]p_v =2*P(z<-1.933)=0.0532[/tex]  

For this case is we use a significance level of 5% we have enough evidence to FAIL to reject the null hypothesis and we can't conclude that the true proportion is different from 0.65 or 65%. We need to be careful since if we use a value higher than 65 for the significance the result would change

Step-by-step explanation:

Information given

n=340 represent the random sample taken

[tex]\hat p=0.60[/tex] estimated proportion of readers owned a laptop

[tex]p_o=0.65[/tex] is the value that we want to test

z would represent the statistic

[tex]p_v{/tex} represent the p value

Hypothesis to test

We want to check if the true proportion of readers owned a laptop if different from 0.65

Null hypothesis:[tex]p=0.65[/tex]  

Alternative hypothesis:[tex]p \neq 0.65[/tex]  

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:

[tex]z=\frac{0.60 -0.65}{\sqrt{\frac{0.65(1-0.65)}{340}}}=-1.933[/tex]  

The p value for this case can be calculated with this probability:

[tex]p_v =2*P(z<-1.933)=0.0532[/tex]  

For this case is we use a significance level of 5% we have enough evidence to FAIL to reject the null hypothesis and we can't conclude that the true proportion is different from 0.65 or 65%. We need to be careful since if we use a value higher than 65 for the significance the result would change