Explanation:
We are given:
sample size= n = 45
sample mean = x = 61,300
sample standard deviation =18,246
Since the population standard deviation is not known we will use t distribution to find the confidence interval.
Confidence interval = 99%
Degrees of freedom= n - 1 = 45 – 1 = 44
Critical t value = 2.692
The 99% confidence interval will be:[tex](x-t_{critical}* \frac{s}{ \sqrt{n} }, x+t_{critical}* \frac{s}{ \sqrt{n} }) \\ \\ (61300-2.692* \frac{18246}{ \sqrt{45} }, 61300+2.692* \frac{18246}{ \sqrt{45} }) \\ \\ (53978,68622)[/tex]
Thus, the 99% confidence interval for the population mean is:
53978 to 68622