Respuesta :
Answer:
It is vertically stretched by a factor of 200 and shifted 10 units right
Step-by-step explanation:
Suppose we have a function f(x).
a*f(x), a > 1, is vertically stretching f(x) a units. Otherwise, if a < 1, we are vertically compressing f(x) by a units.
f(x - a) is shifting f(x) a units to the right.
f(x + a) is shifting f(x) a units to the left.
In this question:
Initially: [tex]f(x) = \frac{1}{x}[/tex]
Then, first we shift, end up with:
[tex]f(x+10) = \frac{1}{x + 10}[/tex]
f was shifted 10 units to the left.
Finally,
[tex]200f(x+10) = \frac{200}{x + 100}[/tex]
It was vertically stretched by a factor of 200.
So the correct answer is:
It is vertically stretched by a factor of 200 and shifted 10 units right