Respuesta :
Answer:
[tex]\left|\begin{array}{c|c|c|c}&$Compounding Option&$n Value&$Result(\$)\\----&----&----&----\\(a)&$Annually&1&\$12515.79\\(b)&$Quarterly&4&\$12585.91\\(c)&$Monthly&12&\$12616.91\\(d)&$Daily&365&\$12621.70\\(e)&$Continuosly&$Not Applicable &\$12622.00\end{array}\right|[/tex]
Explanation:
The compound interest formula is:
[tex]A=P(1+\frac{r}{n})^{nt}[/tex] where:
- A = accumulated amount = ?
- P = Principal amount = $8000
- r= Rate of interest = 3.8% = 0.038
- t = number of years = 12 years
- n= Compounding Period
We are required to complete the table below:
[tex]\left|\begin{array}{c|c|c|c}&$Compounding Option&$n Value&$Result(\$)\\(a)&$Annually&\\(b)&$Quarterly&\\(c)&$Monthly&\\(d)&$Daily&365\\(e)&$Continuosly&$Not Applicable &\end{array}\right|[/tex]
(a)Annually
[tex]n=1\\A=8000(1+\frac{0.038}{1})^{1*12}\\=\$12515.79[/tex]
(b)Quarterly
[tex]n=3\\A=8000(1+\frac{0.038}{3})^{3*12}\\=\$12585.91[/tex]
(c)Monthly
[tex]n=12\\A=8000(1+\frac{0.038}{12})^{12*12}\\=\$12616.91[/tex]
(d)Daily
[tex]n=365\\A=8000(1+\frac{0.038}{365})^{365*12}\\=\$12621.70[/tex]
(e)Continuously
[tex]P(t)=P_0e^{rt}\\=8000 \times e^{0.038 \times 12}\\=\$12622.00[/tex]
The completed table therefore is:
[tex]\left|\begin{array}{c|c|c|c}&$Compounding Option&$n Value&$Result(\$)\\----&----&----&----\\(a)&$Annually&1&\$12515.79\\(b)&$Quarterly&4&\$12585.91\\(c)&$Monthly&12&\$12616.91\\(d)&$Daily&365&\$12621.70\\(e)&$Continuosly&$Not Applicable &\$12622.00\end{array}\right|[/tex]