Answer:
[tex]-0.36 a^{5}b^{6} x^{6}[/tex]
Step-by-step explanation:
Given:
[tex]a^2x^5b,,\ -0.6axb^2,\ and\ 0.6a^2b^3[/tex]
Required
Multiply
The above can be written as
[tex]a^2x^5b * -0.6axb^2\ * \ 0.6a^2b^3[/tex]
Split the above expression
[tex]a^2*x^5*b * -0.6*a*x*b^2\ * \ 0.6*a^2*b^3[/tex]
Collect like terms
[tex]-0.6 * 0.6 * a^2*a*a^2*b *b^2 *b^3*x^5*x[/tex]
Apply first law on indices
[tex]-0.36 * a^{2+1+2} *b^{1+2+3} *x^{5+1}[/tex]
[tex]-0.36 * a^{5} *b^{6} *x^{6}[/tex]
[tex]-0.36 a^{5}b^{6} x^{6}[/tex]
Hence, [tex]a^2x^5b * -0.6axb^2\ * \ 0.6a^2b^3[/tex] is equivalent to [tex]-0.36 a^{5}b^{6} x^{6}[/tex]