Answer:
[tex]-0.36a^5b^6x^6.[/tex]
Step-by-step explanation:
Given:
a²x⁵b, −0.6axb² and 0.6a²b³
Required
Find their product
The product of a²x⁵b, −0.6axb² and 0.6a²b³ is as follows:
[tex]a^2x^5b * -0.6axb^2 * 0.6a^2b^3[/tex]
Split individual monomial
[tex]a^2*x^5*b * -0.6*a*x*b^2 * 0.6*a^2*b^3[/tex]
Bring like terms together
[tex]-0.6 * 0.6 * a^2 * a * a^2 *b *b^2 * b^3 *x^5*x[/tex]
For ease of multiplication, group each like terms using brackets
[tex](-0.6 * 0.6) * (a^2 * a * a^2) * (b *b^2 * b^3) *(x^5*x)[/tex]
Using law of indices;
Which states that; [tex]m^a * m^b = m^{a + b}[/tex]
The expression becomes:
[tex](-0.36) *(a^{2+1+2}) * (b^{1+2+3}) * (x^{5+1})[/tex]
[tex]-0.36 * a^5 * b^6 * x^6[/tex]
Multiply the above expression
[tex]-0.36a^5b^6x^6.[/tex]
Hence;
The product of a²x⁵b, −0.6axb² and 0.6a²b³ is equivalent to [tex]-0.36a^5b^6x^6.[/tex]