Respuesta :

Answer:

The solutions of the equation in the interval [0,2π )

                    ={  [tex]\frac{\pi }{3}[/tex] }

General solution    θ = 2 nπ +α

                                θ =   [tex]2n\pi + \frac{\pi }{3}[/tex]

Step-by-step explanation:

Step(i):-

Given equation

                      cos x + sin x tan x = 2

               ⇒      [tex]cos x + sin x \frac{sin x}{cos x} = 2[/tex]

    On simplification , we get

              ⇒     [tex]\frac{sin^{2} x+ cos^2x}{cos x} = 2[/tex]

we know that trigonometry formula

[tex]sin^{2} x+ cos^2 x = 1[/tex]

now we get

             [tex]\frac{1}{cos x} = 2[/tex]

⇒         [tex]cos x = \frac{1}{2}[/tex]

⇒         cos x = cos 60°

Step(ii):-

General solution of cosθ = cosα

General solution    θ = 2 nπ +α

                               θ = 2 nπ +60°

                                θ =   [tex]2n\pi + \frac{\pi }{3}[/tex]

put n = 0 ⇒ θ = 60°

Put n =1 ⇒  θ = 360°+60°= 420°

.....and so on

The solutions of the equation in the interval  =[tex]\frac{\pi }{3}[/tex]

Final answer:-

The solutions of the equation in the interval [0,2π )

                    ={  [tex]\frac{\pi }{3}[/tex] }

General solution    θ = 2 nπ +α

                                θ =   [tex]2n\pi + \frac{\pi }{3}[/tex]