A specimen of a 4340 steel alloy with a plane strain fracture toughness of 54.8 MPa (50 ksi ) is exposed to a stress of 2023 MPa (293400 psi). Assume that the parameter Y has a value of 1.14. (a) If the largest surface crack is 0.2 mm (0.007874 in.) long, determine the critical stress .

Respuesta :

Answer:

Explanation:

The formula for critical stress is

[tex]\sigma_c=\frac{K}{Y\sqrt{\pi a} }[/tex]

[tex]\sigma_c =\texttt{critical stress}[/tex]

K is the plane strain fracture toughness

Y is dimensionless parameters

We are to Determine the Critical stress

Now replacing the critical stress with 54.8

a with 0.2mm = 0.2 x 10⁻³

Y with 1

[tex]\sigma_c=\frac{54.8}{1\sqrt{\pi \times 0.2\times10^{-3}} } \\\\=\frac{54.8}{\sqrt{6.283\times10^{-4}} } \\\\=\frac{54.8}{0.025} \\\\=2186.20Mpa[/tex]

The fracture will not occur because this material can handle a stress of 2186.20Mpa  before fracture. it is obvious that is greater than 2023Mpa

Therefore, the specimen does not failure for surface crack of 0.2mm

ACCESS MORE
EDU ACCESS
Universidad de Mexico