Answer:
[tex]N(T(t)) = 1408t^2 - 385.6t - 105.52[/tex]
Time for bacteria count reaching 8019: t = 2.543 hours
Step-by-step explanation:
To find the composite function N(T(t)), we just need to use the value of T(t) for each T in the function N(T). So we have that:
[tex]N(T(t)) = 22 * (8t + 1.7)^2 - 123 * (8t + 1.7) + 40[/tex]
[tex]N(T(t)) = 22 * (64t^2 + 27.2t + 2.89) - 984t - 209.1 + 40[/tex]
[tex]N(T(t)) = 1408t^2 + 598.4t + 63.58 - 984t - 169.1[/tex]
[tex]N(T(t)) = 1408t^2 - 385.6t - 105.52[/tex]
Now, to find the time when the bacteria count reaches 8019, we just need to use N(T(t)) = 8019 and then find the value of t:
[tex]8019 = 1408t^2 - 385.6t - 105.52[/tex]
[tex]1408t^2 - 385.6t - 8124.52 = 0[/tex]
Solving this quadratic equation, we have that t = 2.543 hours, so that is the time needed to the bacteria count reaching 8019.