Answer:
Answer is option d)Lines 2 and 4 are perpendicular.
Step-by-step explanation:
[tex] line \: 2 : 4y = 3x - 4 \\ 3x - 4y - 4 = 0 \\ slope \: of \: line \: 2 = \frac{ - coefficient \: of \: x \: }{coefficient \: of \: y} \\ \: \: = \frac{ - 3}{ - 4} \\ \: \: = \frac{3}{4} \\ let \: m1 =\frac{3}{4} \\ line \: 4 : 4x + 3y = - 6 \\ 4x + 3y + 6 = 0 \\ slope \: of \: line \: 4 = \frac{ - coefficient \: of \: x \: }{coefficient \: of \: y} \\ \: \: = \frac{ - 4}{3} \\ let \: m2 = \frac{ - 4}{3} \\ m1 \times m2 = \frac{3}{4} \times \frac{ - 4}{3} \\ m1 \times m2 = - 1 \\ then \: lie \: 2 \: and \: line \: 4 \: are \: perpendicular.[/tex]
HAVE A NICE DAY!
THANKS FOR GIVING ME THE OPPORTUNITY TO ANSWER YOUR QUESTION.