Respuesta :
Answer:
Step-by-step explanation:
[tex]4x^2-16x-9.\\Writ -16x - as -a -difference\\ 4x^2 +2x-18x -9 \\Factor -out- common- terms\\2x(2x+1)-9(2x+1)\\ Factor -out (2x+1)\\(2x+1)(2x-9)[/tex]
I Hope It Helps :)
Answer:
[tex] \boxed{\sf (2x - 9)(2x + 1)} [/tex]
Step-by-step explanation:
[tex] \sf Factor \: the \: following: \\ \sf \implies 4 {x}^{2} - 16x - 9 \\ \\ \sf Factor \: the \: quadratic \: 4 {x}^{2} - 16 x - 9. \\ \sf The \: coefficient \: of \: {x}^{2} \: is \: 4 \: and \: the \: constant \\ \sf term \: is \: - 9. \: The \: product \: of \: 4 \: and \: - 9 \: is \\ \sf - 36. \: The \: factors \: of \: - 36 \: which \: sum \: to \\ \sf - 16 \: are \: 2 \: and \: - 18. \\ \sf So, \\ \sf \implies 4 {x}^{2} - (18 - 2)x - 9 \\ \\ \sf \implies 4 {x}^{2} - 18x + 2x - 9 \\ \\ \sf \implies 2x(2x - 9) + 1(2x - 9) \\ \\ \sf Factor \: 2x - 9 \: from \: 2x(2x - 9) + 1(2x - 9) : \\ \sf \implies (2x - 9)(2x + 1)[/tex]