Answer:
The probability that it will take fewer than six customer contacts to clear the inventory is 0.8%.
Step-by-step explanation:
We have a probability of making an individual sale of p=0.15.
We have 4 units, so the probability of clearing the inventory with n clients can be calculated as:
[tex]P=\dbinom{n}{4}p^4q^{n-4}=\dbinom{n}{4}0.15^4\cdot 0.85^{n-4}[/tex]
As we see in the equation, n has to be equal or big than 4.
In this problem we have to calculate the probability that less than 6 clients are needed to sell the 4 units.
This probability can be calculated adding the probability from n=4 to n=6:
[tex]P=\sum_{n=4}^6P(n)=\sum_{n=4}^6 \dbinom{n}{4}0.15^4^\cdot 0.85^{n-4}\\\\\\P=0.15^4(\dfrac{4!}{4!0!}\cdot 0.85^{4-4}+\dfrac{5!}{4!1!}\cdot0.85^{5-4}+\dfrac{6!}{4!2!}0.85^{6-4})\\\\\\P=0.15^4(1\cdot0.85^0+5\cdot0.85^1+15\cdot0.85^2)\\\\\\P=0.00051(1+4.25+10.84)\\\\\\P=0.00051\cdot16.09\\\\\\P=0.008[/tex]