[tex]\displaystyle\bf\\2cos^2y -sin\,y -1=0~~~for~~0^o\leq y \leq360^o\\\\cos^2y=1-sin^2y\\\\2(1-sin^2y) -sin\,y -1=0\\\\2-2sin^2y-sin\,y-1=0\\\\-2sin^2y-sin\,y+2-1=0\\\\-2sin^2y-sin\,y+1=0~~~\Big|\times(-1)\\\\2sin^2y+sin\,y-1=0[/tex]
.
[tex]\displaystyle\bf\\\boxed{\bf sin\,y=x}\\\\2x^2+x-1=0\\\\x_{12}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-1\pm\sqrt{1-4\cdot2\cdot(-1)}}{2\cdot2}=\\\\=\frac{-1\pm\sqrt{1+8}}{4}=\frac{-1\pm\sqrt{9}}{4}=\frac{-1\pm3}{4}\\\\x_1=\frac{-1+3}{4}=\frac{2}{4}=\boxed{\bf\frac{1}{2}}\\\\x_2=\frac{-1-3}{4}=\frac{-4}{4}=\boxed{\bf-1}\\\\sin\,y=\frac{1}{2}\\\\\boxed{\bf y_1=\frac{\pi}{6}~~or~~(30^o)}\\\\\boxed{\bf y_2=\frac{5\pi}{6}~~or~~(150^o)}\\\\sin\,y=-1\\\\\boxed{\bf y_3=\frac{3\pi}{2}~~or~~(270^o)}[/tex]