One of the roots of the quadratic equation 4mnx^2 – 6m^2x – 6n^2x + 9mn = 0 (m, n ≠ 0) is a)-3m/2n b)3m/2n c)2m/3n d)-2m/3n

Respuesta :

Answer:

[tex]B.\ \frac{3m}{2n}[/tex]

Step-by-step explanation:

Given

[tex]4mnx^2 - 6m^2x - 6n^2x + 9mn = 0\ (m, n \neq 0)[/tex]

Required

Calculate one of the root of the equation

[tex]4mnx^2 - 6m^2x - 6n^2x + 9mn = 0[/tex]

Factorize

[tex]2mx(2nx - 3m) -3n(2nx - 3m) = 0[/tex]

[tex](2mx - 3n)(2nx - 3m) = 0[/tex]

Split equation

[tex]2mx - 3n = 0\ or\ 2nx - 3m = 0[/tex]

Make x the subject of formula in both expressions

[tex]2mx = 3n\ or\ 2nx = 3m[/tex]

[tex]x = \frac{3n}{2m}\ or\ x = \frac{3m}{2n}[/tex]

From the list of given options, one of the roots of the equation is [tex]\frac{3m}{2n}[/tex]