Respuesta :

Answer:

a) 10.7 cm

b) 11.6 cm

c) 29.9 cm²

Step-by-step explanation:

a) sin(α)/a = sin(β)/b

sin(∠BCD)/BD = sin(DBC)/DC

sin(41°)/BD = sin(55°)/13.4

BD = 13.4*sin(41°)/sin(55°) = 10.73 cm ≈ 10.7 cm

b) From ΔBCD , ∠BDC = 180-(41+55) = 84°

∠ABD and ∠BDC are alternate interior angles, so they are congruent, and

∠ABD = ∠BDC  = 84°

AD²= AB² + BD² - 2*AB*BD*cos (∠ABD) =

= 5.6² + 10.73² - 2*5.6*10.73*cos(84°) = 133.93 cm²

AD =√(133.93) ≈11.6 cm

c) Area(ADB) = (1/2)*AB*BD*sin(∠ABD)=(1/2)*5.6*10.73*sin(84°) ≈ 29.9 cm²