Respuesta :
Answer:
30 cm^2
Solution,
[tex] \frac{BD}{CD} = \frac{AE}{CE} \\ or \: \frac{6}{8} = \frac{9}{8 + DE} \\ or \: 48 + 6(DE) = 72 \\ or \: 6(DE) = 72 - 48 \\ or \: 6(DE) = 24 \\ or \: DE= \frac{24}{6} \\ DE = 4 \\ ce = 8 + 4 = 12 \\ area \: of \: trapezoid \\ = area \: \: of \: aec - area \: of \:bdc \\ = \frac{1}{2} (a)(12) - \frac{1}{2} (6)(8) \\ = 54 - 24 \\ = 30 \: {cm}^{2} [/tex]
hope this helps...
Good luck on your assignment..
Answer:
Area = 30 cm²
Step-by-step explanation:
Finding DE first:
ΔCDB is similar to ΔCEA
So, To find DE, We'll take the proportion of their sides:
=> [tex]\frac{6}{8} = \frac{9}{CE}[/tex]
Cross Multiplying
=> 6CE = 72
Dividing both sides by 6
=> CE = 12 cm
Now
DE = CE - CD
DE = 12-8
DE = 4 cm
Now, Finding the Area of trapezium:
=> Area = [tex]\frac{a+b}{2} (Height)[/tex]
Where a = 6, b = 9 and Height = 4
=> Area = [tex]\frac{6+9}{2} (4)[/tex]
=> Area = 2(15)
=> Area = 30 cm²