Respuesta :
Let
[tex] A(-6,7)\\B(-1,2) [/tex]
we know that
The points A and B must satisfy both equations
we proceed to verify each case
case A)
equation [tex] 1 [/tex]
[tex] y=x^{2} -6x-7 [/tex]
check point A
for [tex] x=-6 [/tex]
y must be [tex] 7 [/tex]
substitute
[tex] y=(-6)^{2} -6*(-6)-7 [/tex]
[tex] y=36+36-7\\ y=65 [/tex]
[tex] 65 [/tex] is not equal to [tex] 7 [/tex]
so
The system of equations is not represented by the graph
It is not necessary to check point B
case B)
equation [tex] 1 [/tex]
[tex] y=x^{2} -6x+7 [/tex]
check point A
for [tex] x=-6 [/tex]
y must be [tex] 7 [/tex]
substitute
[tex] y=(-6)^{2} -6*(-6)+7 [/tex]
[tex] y=36+36+7\\ y=79 [/tex]
[tex] 79 [/tex] is not equal to [tex] 7 [/tex]
so
The system of equations is not represented by the graph
It is not necessary to check point B
case C)
equation [tex] 1 [/tex]
[tex] y=x^{2} +6x-7 [/tex]
check point A
for [tex] x=-6 [/tex]
y must be [tex] 7 [/tex]
substitute
[tex] y=(-6)^{2} +6*(-6)-7 [/tex]
[tex] y=36-36-7\\ y=-7 [/tex]
[tex] -7 [/tex] is not equal to [tex] 7 [/tex]
so
The system of equations is not represented by the graph
It is not necessary to check point B
case D)
equation [tex] 1 [/tex]
[tex] y=x^{2} +6x+7 [/tex]
check point A
for [tex] x=-6 [/tex]
y must be [tex] 7 [/tex]
substitute
[tex] y=(-6)^{2} +6*(-6)+7 [/tex]
[tex] y=36-36+7\\ y=7 [/tex]
[tex] 7 [/tex] is equal to [tex] 7 [/tex]------->is ok
check point B
for [tex] x=-1 [/tex]
y must be [tex] 2 [/tex]
substitute
[tex] y=(-1)^{2} +6*(-1)+7 [/tex]
[tex] y=1-6+7\\ y=2 [/tex]
[tex] 2 [/tex] is equal to [tex] 2 [/tex]----->is ok
equation [tex] 2 [/tex]
[tex] x+y=1 [/tex]
check point A
for [tex] x=-6 [/tex]
y must be [tex] 7 [/tex]
substitute
[tex] -6+y=1\\ y=6+1\\ y=7 [/tex]
[tex] 7 [/tex] is equal to [tex] 7 [/tex]------->is ok
check point B
for [tex] x=-1 [/tex]
y must be [tex] 2 [/tex]
substitute
[tex] -1+y=1\\ y=1+1\\ y=2 [/tex]
[tex] 2 [/tex] is equal to [tex] 2 [/tex]----->is ok
therefore
the answer is the option D
[tex] y=x^{2} +6x+7 [/tex]
[tex] x+y=1 [/tex]
Answer:
The correct option is D.
Step-by-step explanation:
From the given graph it is noticed that the line and parabola intersect each other at points (-6,7) and (-1,2). It means each equation of the system must be satisfied by these points.
If a line passing through two points, then the equation of line is
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
The equation of line is
[tex]y-7=\frac{2-7}{-1-(-6)}(x-(-6))[/tex]
[tex]y-7=-(x+6)[/tex]
[tex]y-7=-x-6[/tex]
[tex]y+x=1[/tex] .... (1)
Therefore the equation of line is [tex]y+x=1[/tex].
The standard form of the parabola is
[tex]y=a(x-h)^2+k[/tex]
Where (h,k) is the vertex.
From the graph it is noticed that the vertex of the parabola is (-3,-2).
[tex]y=a(x+3)^2-2[/tex]
The parabola passing through the point (-1,2).
[tex]2=a(-1+3)^2-2[/tex]
[tex]2=4a-2[/tex]
[tex]a=1[/tex]
Therefore the equation of parabola is
[tex]y=(1)(x+3)^2-2=x^2+6x+9-2=x^2+6x+7[/tex] .... (2)
So, the system of equations contains equation (1) and (2). Option D is correct.