Respuesta :

Answer:

See Explanation Below

Step-by-step explanation:

Given

[tex](sin x - cos x)^2 = sec^2x - tan^2x - 2sinx.cos x.[/tex]

Required

Prove

To start with; we open the bracket on the left hand side

[tex](sin x - cos x)^2 = (sin x - cos x)(sin x - cos x)[/tex]

[tex](sin x - cos x)^2 = (sin x )(sin x - cos x)- (cos x)(sin x - cos x)[/tex]

[tex](sin x - cos x)^2 = sin^2 x -sinx cos x - sin xcos x + cos^2 x[/tex]

[tex](sin x - cos x)^2 = sin^2 x -2sinx cos x + cos^2 x[/tex]

Reorder

[tex](sin x - cos x)^2 = sin^2 x + cos^2 x - 2sinx cos x[/tex]

From trigonometry;

[tex]sin^2x + cos^2x = 1[/tex]

So;

[tex](sin x - cos x)^2 = sin^2 x + cos^2 x - 2sinx cos x[/tex]

becomes

[tex](sin x - cos x)^2 = 1 - 2sinx cos x[/tex]

Also from trigonometry;

[tex]sec^2x - tan^2x = 1[/tex]

So,  

[tex](sin x - cos x)^2 = 1 - 2sinx cos x[/tex]

becomes

[tex](sin x - cos x)^2 = sec^2x - tan^2x - 2sinx cos x[/tex]

Proved