Respuesta :
Answer:
The approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.
Step-by-step explanation:
The equation of the parabola is:
[tex]y=0.00035x^{2}[/tex]
Compute the first order derivative of y as follows:
[tex]y=0.00035x^{2}[/tex]
[tex]\frac{\text{d}y}{\text{dx}}=\frac{\text{d}}{\text{dx}}[0.00035x^{2}][/tex]
[tex]=2\cdot 0.00035x\\\\=0.0007x[/tex]
Now, it is provided that |x | ≤ 605.
⇒ -605 ≤ x ≤ 605
Compute the arc length as follows:
[tex]\text{Arc Length}=\int\limits^{x}_{-x} {1+(\frac{\text{dy}}{\text{dx}})^{2}} \, dx[/tex]
[tex]=\int\limits^{605}_{-605} {\sqrt{1+(0.0007x)^{2}}} \, dx \\\\={\displaystyle\int\limits^{605}_{-605}}\sqrt{\dfrac{49x^2}{100000000}+1}\,\mathrm{d}x\\\\={\dfrac{1}{10000}}}{\displaystyle\int\limits^{605}_{-605}}\sqrt{49x^2+100000000}\,\mathrm{d}x\\\\[/tex]
Now, let
[tex]x=\dfrac{10000\tan\left(u\right)}{7}\\\\\Rightarrow u=\arctan\left(\dfrac{7x}{10000}\right)\\\\\Rightarrow \mathrm{d}x=\dfrac{10000\sec^2\left(u\right)}{7}\,\mathrm{d}u[/tex]
[tex]\int dx={\displaystyle\int\limits}\dfrac{10000\sec^2\left(u\right)\sqrt{100000000\tan^2\left(u\right)+100000000}}{7}\,\mathrm{d}u[/tex]
[tex]={\dfrac{100000000}{7}}}{\displaystyle\int}\sec^3\left(u\right)\,\mathrm{d}u\\\\=\dfrac{50000000\ln\left(\tan\left(u\right)+\sec\left(u\right)\right)}{7}+\dfrac{50000000\sec\left(u\right)\tan\left(u\right)}{7}\\\\=\dfrac{50000000\ln\left(\sqrt{\frac{49x^2}{100000000}+1}+\frac{7x}{10000}\right)}{7}+5000x\sqrt{\dfrac{49x^2}{100000000}+1}[/tex]
Plug in the solved integrals in Arc Length and solve as follows:
[tex]\text{Arc Length}=\dfrac{5000\ln\left(\sqrt{\frac{49x^2}{100000000}+1}+\frac{7x}{10000}\right)}{7}+\dfrac{x\sqrt{\frac{49x^2}{100000000}+1}}{2}|_{limits^{605}_{-605}}\\\\[/tex]
[tex]=1245.253707795227\\\\\approx 1245.25[/tex]
Thus, the approximated length of the cables that stretch between the tops of the two towers is 1245.25 meters.