Respuesta :
Answer:
The final angular speed of the merry-go-round is [tex]3.118\,\frac{rad}{s}[/tex] [tex]\left(0.496\,\frac{rev}{s} \right)[/tex].
Explanation:
Given the absence of external forces, the final angular speed of the merry-go-round can be determined with the resource of the Principle of Angular Momentum Conservation, which is described in this case as:
[tex]I_{g, m} \cdot \omega_{o,m} + I_{g, p}\cdot \omega_{o,p} = (I_{g,m} + I_{g, p})\cdot \omega_{f}[/tex]
Where:
[tex]I_{g,m}[/tex] - Moment of inertia of the merry-go-round with respect to its axis of rotation, measured in [tex]kg\cdot m^{2}[/tex].
[tex]I_{g,p}[/tex] - Moment of inertia of the person with respect to the axis of rotation of the merry-go-round, measured in [tex]kg\cdot m^{2}[/tex].
[tex]\omega_{o, m}[/tex] - Initial angular speed of the merry-go-round with respect to its axis of rotation, measured in radians per second.
[tex]\omega_{o,p}[/tex] - Initial angular speed of the merry-go-round with respect to the axis of rotation of the merry-go-round, measured in radians per second.
[tex]\omega_{f}[/tex] - Final angular speed of the merry-go-round-person system, measured in radians per second.
The final angular speed is cleared:
[tex]\omega_{f} = \frac{I_{g,m}\cdot \omega_{o,m}+I_{g,p}\cdot \omega_{o,p}}{I_{g,m}+I_{g,p}}[/tex]
Merry-go-round is modelled as uniform disk-like rigid body, whereas the person can be modelled as a particle. The expressions for their moments of inertia are, respectively:
Merry-go-round
[tex]I_{g,m} = \frac{1}{2}\cdot M \cdot R^{2}[/tex]
Where:
[tex]M[/tex] - The mass of the merry-go-round, measured in kilograms.
[tex]R[/tex] - Radius of the merry-go-round, measured in meters.
Person
[tex]I_{g,p} = m\cdot r^{2}[/tex]
Where:
[tex]m[/tex] - The mass of the person, measured in kilograms.
[tex]r[/tex] - Distance of the person with respect to the axis of rotation of the merry-go-round, measured in meters.
If [tex]M = 185\,kg[/tex], [tex]m = 63.4\,kg[/tex], [tex]R = r = 2.83\,m[/tex], the moments of inertia are, respectively:
[tex]I_{g,m} = \frac{1}{2}\cdot (185\,kg)\cdot (2.83\,m)^{2}[/tex]
[tex]I_{g,m} = 740.823\,kg\cdot m^{2}[/tex]
[tex]I_{g,p} = (63.4\,kg)\cdot (2.83\,m)^{2}[/tex]
[tex]I_{g,p} = 507.764\,kg\cdot m^{2}[/tex]
The angular speed experimented by the person with respect to the axis of rotation of the merry-go-round is:
[tex]\omega_{o,p} = \frac{v_{p}}{r}[/tex]
[tex]\omega_{o,p} = \frac{3.51\,\frac{m}{s} }{2.83\,m}[/tex]
[tex]\omega_{o,p} = 1.240\,\frac{rad}{s}[/tex]
Given that [tex]I_{g,m} = 740.823\,kg\cdot m^{2}[/tex], [tex]I_{g,p} = 507.764\,kg\cdot m^{2}[/tex], [tex]\omega_{o,m} = 4.405\,\frac{rad}{s}[/tex] and [tex]\omega_{o,p} = 1.240\,\frac{rad}{s}[/tex], the final angular speed of the merry-go-round is:
[tex]\omega_{f} = \frac{(740.823\,kg\cdot m^{2})\cdot \left(4.405\,\frac{rad}{s} \right)+(507.764\,kg\cdot m^{2})\cdot \left(1.240\,\frac{rad}{s} \right)}{740.823\,kg\cdot m^{2}+507.764\,kg\cdot m^{2}}[/tex]
[tex]\omega_{f} = 3.118\,\frac{rad}{s}[/tex]
[tex]\omega_{f} = 0.496\,\frac{rad}{s}[/tex]
The final angular speed of the merry-go-round is [tex]3.118\,\frac{rad}{s}[/tex] [tex]\left(0.496\,\frac{rev}{s} \right)[/tex].