Respuesta :
Answer:
a. P(X ≤ 5) = 0.999
b. P(X > λ+λ) = P(X > 2) = 0.080
Step-by-step explanation:
We model this randome variable with a Poisson distribution, with parameter λ=1.
We have to calculate, using this distribution, P(X ≤ 5).
The probability of k pipeline failures can be calculated with the following equation:
[tex]P(k)=\lambda^{k} \cdot e^{-\lambda}/k!=1^{k} \cdot e^{-1}/k!=e^{-1}/k![/tex]
Then, we can calculate P(X ≤ 5) as:
[tex]P(X\leq5)=P(0)+P(1)+P(2)+P(4)+P(5)\\\\\\P(0)=1^{0} \cdot e^{-1}/0!=1*0.3679/1=0.368\\\\P(1)=1^{1} \cdot e^{-1}/1!=1*0.3679/1=0.368\\\\P(2)=1^{2} \cdot e^{-1}/2!=1*0.3679/2=0.184\\\\P(3)=1^{3} \cdot e^{-1}/3!=1*0.3679/6=0.061\\\\P(4)=1^{4} \cdot e^{-1}/4!=1*0.3679/24=0.015\\\\P(5)=1^{5} \cdot e^{-1}/5!=1*0.3679/120=0.003\\\\\\P(X\leq5)=0.368+0.368+0.184+0.061+0.015+0.003=0.999[/tex]
The standard deviation of the Poisson deistribution is equal to its parameter λ=1, so the probability that X exceeds its mean value by more than one standard deviation (X>1+1=2) can be calculated as:
[tex]P(X>2)=1-(P(0)+P(1)+P(2))\\\\\\P(0)=1^{0} \cdot e^{-1}/0!=1*0.3679/1=0.368\\\\P(1)=1^{1} \cdot e^{-1}/1!=1*0.3679/1=0.368\\\\P(2)=1^{2} \cdot e^{-1}/2!=1*0.3679/2=0.184\\\\\\P(X>2)=1-(0.368+0.368+0.184)=1-0.920=0.080[/tex]