The article "Expectation Analysis of the Probability of Failure for Water Supply Pipes"† proposed using the Poisson distribution to model the number of failures in pipelines of various types. Suppose that for cast-iron pipe of a particular length, the expected number of failures is 1 (very close to one of the cases considered in the article). Then X, the number of failures, has a Poisson distribution with μ = 1. (Round your answers to three decimal places.) Obtain P(X ≤ 5) by using the Cumulative Poisson Probabilities What is the probability that X exceeds its mean value by more than one standard deviation?

Respuesta :

Answer:

a. P(X ≤ 5) = 0.999

b. P(X > λ+λ) = P(X > 2) = 0.080

Step-by-step explanation:

We model this randome variable with a Poisson distribution, with parameter λ=1.

We have to calculate, using this distribution, P(X ≤ 5).

The probability of k pipeline failures can be calculated with the following equation:

[tex]P(k)=\lambda^{k} \cdot e^{-\lambda}/k!=1^{k} \cdot e^{-1}/k!=e^{-1}/k![/tex]

Then, we can calculate P(X ≤ 5) as:

[tex]P(X\leq5)=P(0)+P(1)+P(2)+P(4)+P(5)\\\\\\P(0)=1^{0} \cdot e^{-1}/0!=1*0.3679/1=0.368\\\\P(1)=1^{1} \cdot e^{-1}/1!=1*0.3679/1=0.368\\\\P(2)=1^{2} \cdot e^{-1}/2!=1*0.3679/2=0.184\\\\P(3)=1^{3} \cdot e^{-1}/3!=1*0.3679/6=0.061\\\\P(4)=1^{4} \cdot e^{-1}/4!=1*0.3679/24=0.015\\\\P(5)=1^{5} \cdot e^{-1}/5!=1*0.3679/120=0.003\\\\\\P(X\leq5)=0.368+0.368+0.184+0.061+0.015+0.003=0.999[/tex]

The standard deviation of the Poisson deistribution is equal to its parameter λ=1, so the probability that X exceeds its mean value by more than one standard deviation (X>1+1=2) can be calculated as:

[tex]P(X>2)=1-(P(0)+P(1)+P(2))\\\\\\P(0)=1^{0} \cdot e^{-1}/0!=1*0.3679/1=0.368\\\\P(1)=1^{1} \cdot e^{-1}/1!=1*0.3679/1=0.368\\\\P(2)=1^{2} \cdot e^{-1}/2!=1*0.3679/2=0.184\\\\\\P(X>2)=1-(0.368+0.368+0.184)=1-0.920=0.080[/tex]

Otras preguntas

ACCESS MORE